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Abstract

We assess the impact of relative energy prices on industrial investment loca-
tion across 41 countries. We develop a gravity model of firms’ investment location
decisions, which we estimate on global bilateral investment flows constructed from
firm-level M&A. We find that a 10% increase in the energy price differential between
two countries augments cross-border acquisitions by 3.2%. This effect is concen-
trated in energy intensive industries and transactions targeting emerging economies.
Policy simulations indicate that unilateral carbon pricing would only have a small
impact on cross-border investments.
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1 Introduction
One of the main obstacles to ramping up regulation on industrial emissions in the race
to net zero are concerns around competitiveness loss and industrial offshoring. In a
closed economy, carbon price signals that regulated firms face are fully passed forward
throughout the value chain thus discouraging high carbon goods and services at each
stage of production and consumption. Instead in an open economy with competition from
trade, domestic firms’ ability to pass forward carbon costs may be restricted (Ganapati
et al., 2020). In addition to the fear of being undercut by foreign competition depressing
domestic prices and eroding profit margins, a key concern politically is that rising costs
of energy or climate policies makes abroad seem like a safer place to invest new capital
for industrial sectors.

Recent empirical studies generally find limited evidence of significant leakage and relo-
cation responses from carbon pricing policies (Ellis et al., 2019; Verde, 2020; Caron, 2022;
Naegele and Zaklan, 2019; Koch and Mama, 2019). This is in some ways unsurprising



given that most policies regulating industrial emissions embed measures to prevent leak-
age such as free allowance allocations in emissions trading and exemptions from carbon
taxes. Moreover, most empirical studies have been conducted using data during periods
of low carbon prices.

Instead, studies using industrial energy prices as a proxy for the added climate policy
costs suggest that cross-country differences may matter for energy intensive sector invest-
ment location decisions (e.g. Panhans et al., 2016; Garsous et al., 2020). In particular,
two studies in this vein using the U.S. shale gas boom as an exogenous shock find evidence
in support of theoretical predictions that an increase in the price gap with other countries
will increase U.S. energy intensive industries’ investments (as well as output, factor usage,
and exports) (Arezki et al., 2017; Manderson and Kneller, 2020). Developing countries
remain poorly represented in existing empirical studies, however.

Indeed the fear of leakage still prevails, as is evident from the heated debate on how
to strengthen leakage protection for example through border carbon adjustments and
other consumption based measures (Grubb et al., 2022). In turn these developments
reflect the growing recognition that incentives for industrial decarbonisation need to be
strengthened particularly for rich countries to meet mid century carbon neutrality goals
on the one hand, and the expectation that large differences in carbon prices will continue
globally on the other, as countries advance climate action at different speeds under the
bottom up approach of the Paris Agreement (Robiou du Pont and Meinshausen, 2018).

To advance these debates, this paper analyses the role of energy prices in firms’ in-
vestment location decisions in the manufacturing sector using a global setting, that allows
deriving general results across a wide geographical context. To this end we use an ex-
haustive Thomson-Reuters dataset of all cross-border M&A deals in the manufacturing
sector. Our data includes information on over 70,000 M&A deals – of which 22,000 are
cross-border – between firms in 22 sectors in 33 industrialised countries and 10 emerging
economies during the period 1995 and 2014. This goes well beyond previous multi coun-
try studies in this literature. In particular, our data covers emerging economies which
are central to concerns around investment and leakage such as China, India, Mexico and
Turkey, where carbon pricing is likely to ramp up later. Moreover, the bilateral data
structure allows controlling for multitude of confounding factors e.g. sector, country, pair
level trends, overcoming challenges in identifying comparative cost advantage in previous
studies.1

To motivate our empirical strategy, we specify a conditional logit model linking bi-
lateral foreign direct investment (FDI) activity to relative bilateral energy prices. Our
model builds on the dartboard model of M&A of Head and Ries (2008), an application
of discrete choice theory to the firm location problem. It predicts that conditional on
having decided to make an investment in an external firm, an acquiring firm will choose
its target by considering – among other factors – the ratio between the energy cost it faces
domestically and the one its target acquisition faces. Empirically, the bilateral nature of
the M&A transaction counts considered in our model gives rise to a gravity-like specifi-
cation, including a multilateral resistance term. We thus draw from the recent literature
on the determinants of cross-border investments, which use bilateral flows and a base
model consisting of gravity-type covariates, borrowing from the empirical bilateral trade

1Instead, many previous studies utilised within country variation to look at inbound FDI location
choice/ outbound FDI rates, or variation in target country environmental policy stringency to test out-
bound FDI location choice and did not directly test relative measures of policy stringency between host
acquirer and target.
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literature (e.g. Anderson, 2011; Head and Mayer, 2014; Anderson and Yotov, 2012) to
motivate our estimation strategy and specify an appropriate fixed effects structure.

For computational tractability, the bilateral firm-level transaction count data is aggre-
gated at the ISIC 2-digit pair level, and our identification strategy rests on within-country
cross-sectoral energy price differentials, enabling to control for the large number of poten-
tial confounding factors.

We find that the basic logic of comparative advantage – and specifically cross-country
energy cost differences – contribute to explaining the patterns of industrial firms’ invest-
ment location decisions in two specific instances. Namely, they matter for deals involving
a South based firm – most of which consist of North-South deals, when a firm based in
an industrialised country acquires a firm based in a developing country; and horizontal
North-North deals in high energy intensive sectors. The former accounts for 15.9% of
total cross-border deals and the latter 18.1% from 1995 to 2014, such that energy price
differences matter in 34% of cross-border M&A activity over those same two decades.
The role of energy price differences is heterogeneous and has no effect in the majority of
deals. In the cases of North-South deals and horizontal North-North energy intensive sec-
tor deals, we find that a 10% increase in the relative energy price differential between two
countries is expected to increase the number of deals by around 5% and 3% respectively.
Counterfactual simulations reveal that a carbon price gap of $50/tCO2 led by various
coalitions of countries is expected to have limited influence on the FDI attractiveness of
economies. Our main contribution is to use a truly multi-country framework and suffi-
ciently disaggregated data that allows obtaining comparable estimates to understand the
heterogeneity in effects across sectors and geography.

Our findings confirms tha fears of industrial offshoring are warranted but only in
relatively well defined specific situations and cannot be generalised. The vast majority of
cross-border deals in manufacturing occur between firms in industrialised countries (84.1%
in our sample), and the majority of them are not in energy intensive sectors. For example,
the U.S. has been shown to have a unique advantage in energy intensive manufacturing
thanks in part to the expansion of shale oil (Arezki et al., 2017; Manderson and Kneller,
2020). This highlights the imperative of harmonizing climate policy stringency within
industrialised nations for the most energy intensive sectors to prevent leakage. Our results
also suggests that supporting measures against carbon leakage such as carbon boarder
adjustments need not be economy wide, but may warrant being used sparingly. If no anti-
leakage measures are in place and a carbon price gap of $50/tCO2 persist, our simulation
shows the overall effects on global M&A patters will be small.

We draw on and contribute to several strands of literature. The first literature explores
how energy prices differences influence manufacturing production, employment, trade and
investments (Ratti et al., 2011; Kahn and Mansur, 2013; Aldy and Pizer, 2015; Sato and
Dechezleprêtre, 2015; Panhans et al., 2016). So far, U.S. or European data has been used in
this literature, and studies tend to find that energy intensive industry activity concentrates
in areas with low energy price. Exploring the role of energy prices is interesting in its own
right, but it also helps us understand impacts of environmental policies. This is because
energy prices capture a significant share of the variation in environmental policy (Sato
et al., 2019) and environmental policy stringency is notoriously difficult to measure in a
quantifiable and comparable manner across countries.

We also contribute to the long-standing pollution haven effect literature, on the link
between environmental regulation and trade flows or investment decisions (McGuire, 1982;
Taylor, 2004; Cole et al., 2017; Koch and Mama, 2019; Borghesi et al., 2020). This em-
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pirical literature highlights a number of challenges. First, wide geographical coverage of
the data is important, because the strongest effects observed tend to be found in studies
with smaller geographical scope, which feature less variation in other determinants of
production location (Jeppesen et al., 2002). Second, data should be sufficiently spatially
disaggregated in order to control for the multitude of confounding factors. In particular,
the effect of stricter regulation is spatially heterogeneous and varies systematically on
location specific attributes like unemployment levels. Third, disaggregated data is also
important in order to address endogeneity issues – treating environmental regulation as
endogenous is important, as an influx of FDI can lead to a change in environmental reg-
ulation (Frankel and Rose, 2005). Forth, recent studies argue the importance of testing
pollution haven effects using bilateral data and taking accounting for relative policy strin-
gency (e.g. Tang, 2015; Rezza, 2015) in line with the theory that predicts plant location
and trade as a function of differences in relative factor endowments (Helpman, 1984).
Using aggregated FDI data of total inward or outward flows for a given country prevents
any differential analysis at the bilateral level.2 Fifth, as noted, variables capturing envi-
ronmental regulation stringency of a particular location are often subject to measurement
error, due to its multidimensional nature (Brunel and Levinson, 2016).34 Lastly and also
as previously noted, some environmental policies embed mechanism to prevent trade and
investment impacts.5 While these empirical studies of the pollution haven effect have
been illuminating, the results yield mixed conclusions (Rezza, 2015).

Lastly, this article also contributes to the broader literature that examine the impact
of production factor costs on FDI and cross border M&A activity, using both theoretical
and empirical approaches. Studies highlight the importance of traditional gravity factors
– geographical and cultural proximity, market size (Breinlich, 2008; Blonigen and Piger,
2014). Other determinants explored include taxation (Giroud and Rauh, 2019; Todten-
haupt and Voget, 2021), stock market valuations and exchange rates (Erel et al., 2012),
tariff-jumping and trade costs (Brainard, 1997), and financial and institutional constraints
(Alquist et al., 2019). Energy vectors – for our purposes electricity, coal, natural gas and
petroleum products – has received less attention but is arguably an appealing case for
assessing the impact of factor costs on investment location decisions. This is because
compared for example to labour, energy products are homogeneous goods that for the
most part do not vary in quality and are priced using standardised units across the globe
(Siggel, 2006; Atkeson and Burstein, 2008).

The paper proceeds as follows. Section 2 develops our simple theoretical framework
to guide our analysis. Section 3 presents our empirical strategy. Section 4 describes
the sources and structure of our M&A dataset and our industrial energy price data.
Section 5 assesses the impact of energy prices on investment location decisions and presents
the results of our estimations before exploring the heterogeneity of these impacts along

2A common approach is to exploit the variation in environmental regulation within a country, and
assess if jurisdictions with lax policy can attract more inbound FDI flows (List et al., 2004; Millimet and
Roy, 2015), or discourage outbound FDI flows (Cole and Elliott, 2005; Hanna, 2010).

3Regulations target different pollutants arising from different media such as air, water and land, and
different polluters such as industry and households, and can take many forms such as pollution reduction
targets and technology standards.

4A group of studies use data in a specific country, and measures of environmental policy stringency
across potential host countries, to assess if the latter can explain the destination choice for outbound
FDI flows (Wagner and Timmins, 2009; Raspiller and Riedinger, 2008; Manderson and Kneller, 2012;
Ben Kheder and Zugravu, 2012).

5For example this caveat is relevant for studies on the EU emissions trading system (e.g. Branger
et al., 2016; Boutabba and Lardic, 2017; Naegele and Zaklan, 2019; Borghesi et al., 2020)
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various dimensions in sections 5.2 and 5.3. We finally present our counterfactual policy
simulations in section 6 before concluding.

2 Theoretical determinants of cross-border invest-
ment location

Reduced form analyses examining the impact of energy or environmental policy on indus-
trial investment location generally ignore the bilateral structure of cross-border investment
flows. To overcome this limitation, we construct a model of the firm’s choice of invest-
ment location conditional on the decision to invest. We build on Head and Ries (2008)’s
dartboard model, which applies McFadden (1974)’s discrete choice theory to the firm
location problem. We also draw from applications of this model by Hijzen et al. (2008)
and Coeurdacier et al. (2009), who study the impact of trade costs and the European
integration on FDI respectively. In effect, we consider the firm’s investment decision as a
two step process: first, the firm decides whether to invest in another firm, and second it
chooses its target. We are only concerned with the second step of this decision process,
which determines the location of the investment.

Let g be a firm operating in sector k ∈ S and country i ∈ C, with S the set of all
sectors and C the set of all countries. Consider now a second firm h, h ̸= g, operating
in sector l and country j – (j, l) ∈ C × S. This framework encompasses the baseline case
where the firm decides to invest in a domestic firm (i = j) operating in the same sector
(k = l)6. We are interested in deriving the probability that g acquires h conditional on g
having decided to invest in another firm.

Let πh be the profit that firm g can expect if it acquires h. We consider a reduced-
form profit function πh , log-linear in the characteristics of h. In the following, we shall
only consider the variation in these characteristics observed at the country and sector
level. Therefore, for a given characteristic Xc, we assume that for any firm h operating in
country j and sector l, Xc,h = Xc,jl. Examples of Xc,jl include covariates such as sectoral
energy prices. We have, with εh a stochastic component:

πh ≡
∑

c

βc log Xc,h + εh =
∑

c

βc log Xc,jl + εh (1)

Under the assumption that the perturbation term εh is distributed as a Type I extreme
value (McFadden, 1974), we have from discrete choice theory the following familiar multi-
nomial logit expression for the probability Pg,h that g acquires h:

Pg,h = exp(πh)∑
h′

exp(πh′)
(2)

We now write njl the number of firms that operate in country j and sector l. Aggregating
at the target sectoral and country levels, we get the probability that g acquires a firm in
country j and sector l:

Pg,jl = njl exp(πjl)∑
j′∈C,l′∈S

nj′l′ exp(πj′l′)
(3)

6In effect, in the discrete choice model introduced below, this configuration – same-sector domestic
investment – is functionally equivalent to the outside good in a consumption model, and thus constitutes
the control against which other options are compared.
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Summing over all firms in acquiring country i and sector k, we can express the number
of deals mijkl observed between country-sector pairs (i, k) and (j, l):

mijkl = niknjl exp(πjl)∑
j′∈C,l′∈S

nj′l′ exp(πj′l′)
(4)

Since i ∈ C and k ∈ S, we finally get:

mijkl = niknjl exp(πjl − πik)
Ωijkl

(5)

with Ωijkl ≡ ∑
j′∈C,l′∈S

nj′l′ exp(πj′l′ − πik).

This expression is functionally similar to the gravity equation commonly used in the
trade literature (Head and Mayer, 2014). The number of deals7 between two country
sector pairs is proportional to the economic size of the two sectors considered – measured
here by the number of firms operating in each sector. Further, Ωijkl can be construed as
an indicator of the financial attractiveness of a sector in a given country – and therefore
the difficulty to acquire one of its targets: the more profitable targets in a given country-
sector pair are, the larger Ωijkl becomes, and the smaller the probability for potential
acquirers to out compete the rest of the world and achieve a deal. Ωijkl is therefore a
remoteness index comparable to that found in trade theory (Anderson, 2011). It plays in
effect the role of a multi-lateral resistance (MLR) term in equation (5).8

Injecting equation (1) into (5), we get:

mijkl =
niknjl

∏
c

(
Xc,jl

Xc,ik

)βc

Ωijkl

(6)

In the case of sectoral energy prices, (6) implies that the number of deals is directly
related to the ratio of energy prices between the target and host countries, thus to the
sectoral energy price of the target country relative to that of the host country. A decrease
(resp. increase) in this ratio is thus expected to cause an increase (resp. decrease) in the
number of deals observed between the country pair considered. This result is intuitive:
when energy prices in country j become cheaper relative to those of country i, firms in
country i are expected to be incentivised to invest in country j.

3 Empirical strategy
Our objective is to estimate the impact of relative energy prices on firm’s investment
location decisions. In the context of our theoretical framework, the coefficient of interest
is therefore the βc related to relative energy prices. To estimate this model, we first
rearrange equation (6) as follows:

mijklt = exp
[
log nikt + log njlt +

∑
c

βc (log Xc,jlt − logXc,ikt) − log Ωijklt

]
(7)

7Note that this model use the number of transactions to proxy for M&A activity, yet an improved
measure is the deal values. Unfortunately, data availability constraints prevent using M&A deal values
as the outcome variable. Nonetheless we rise to the challenge in Appendix D.

8The empirical trade literature has shown that it is necessary to account not only for bilateral trade
resistance (the barriers to trade between a pair of countries) but also multilateral trade resistance (the
barriers to trade that a country faces with all its trading partners).
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This formulation highlights that our model follows the “general gravity” form9 defined
by Head and Mayer (2014). The main challenge to estimate that class of models is to
adequately control for the multi-lateral resistance term Ωijkl. Fally (2015) shows that this
specification form is equivalent to a structural gravity setting, where MLR terms can be
accounted for by an appropriately designed set of fixed effects. In our context, where the
number of deals is observed at the country-sector level repeatedly over time, the fixed
effects structure consistent with structural gravity is as follows (Piermartini and Yotov,
2016):

mijklt = exp
[
log nikt + log njlt +

∑
c

βc (log Xc,jlt − logXc,ikt) + αij + ηikt + νjlt

]
(8)

In equation (8), αij capture time-invariant country-pair effects, while ηikt and νjlt are
country-sector-year fixed effects. However, under this specification, our coefficients of
interest, the βc, are not identifiable. Indeed the locational characteristics of the acquiring
and target country-sector pairs are collinear with ηikt and νjlt respectively10.

To overcome this difficulty, we relax the fixed effect structure to account for most
of the confounding factors that may influence firms’ choice of investment location while
maintaining the identifiability of the βc.

In our main specification, we include country-pair, country-year and sectoral fixed
effects. Country-pair fixed effects account for the time invariant characteristics commonly
considered in gravity models, including but not limited to: distance, commonality of
language or system of law, colonial history. Since these factors do not form the focus of
this study, identifying their individual impact on investment activity is not relevant in
our context.

Sectoral effects allow us to capture systematic differences in cross-border investment
activity between sectors. Such variation can be explained differences in market structure,
technology or specificities of the product manufactured. Country-time form the largest
group of fixed effects included. They account for the country-specific macroeconomic en-
vironment and any independent variable which vary at the country-time granularity. This
includes a number of factors identified in the M&A literature to be correlated with the
number of deals between two given countries, irrespective of their market sizes (Di Gio-
vanni, 2005), such as exchange rates or stocks valuation.

Importantly, country-time fixed effects control for production factor costs at the ag-
gregate level in the countries on both sides of the transaction: namely country-wide mean
labor, capital and energy costs. They also control for country-level policies that may
influence investment decisions in the manufacturing sector, such as cross-sectoral envi-
ronmental policy. Further, country-time fixed effects also encompass time fixed effects,
which control for the highly cyclical nature of global merger and acquisition flows (Erel
et al., 2012).

This rich set of fixed effects allow us to control for confounding factors that may
influence firms’ choice of investment location other than our regressor of interest, relative
energy costs, as is common in the gravity literature (Head and Mayer, 2014; Arvis and

9Equation (7) illustrates that our model is of the form Xij = exp [ei − θlogDij + mj ], with ei invariant
across exporters i and mj invariant across importers j.

10This stems from the fact that our main regressors of interest, the logarithms of the ratios of loca-
tional characteristics in the acquiring and target country-sectors, are not truly dyadic variables. Instead,
these ratios result from a linear combination – a difference – of two monadic variables: the log of the
characteristics Xc, observed for the acquiring and target firms.
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Shepherd, 2013). Finally, we also control for the existence of a free-trade agreement
between a given country pair. We note that in this specification, identification rests on
within-country cross-sectoral energy price differences.

Estimating equation (9) requires an estimate of the number of potential acquiring
and target companies, nik and njl, in the countries and sectors considered. We follow
Hijzen et al. (2008) and approximate this using sectoral GDP in acquiring and target
countries. In the reduced form profit function, we include our main regressor of interest,
the ratio of energy prices in the country-sector of the acquiring and target companies. We
complement it with country-sector level estimates for the cost of labor and capital, since
cross-sectoral differences in the cost of these two production factors could also have an
impact on firms’ investment decisions (Wheeler and Mody, 1992). Other industry-wide
cost components are accounted for by country-time fixed effects.

Our baseline specification is therefore:

mijkl,t = exp
[
β1 log GDPik,t + β2 log GDPjl,t + βe log eijkl,t+

β5 ftaij,t + α0,ij + α1,k + α2,l + α3,it + α4,jt

]
+ εijkl,t

(9)

where for each country-sector pair ik (acquirer) or jl (target), GDPik,t and GDPjl,t are
the sectoral GDP, ftaij,t is a dummy indicating the presence of a free-trade agreement
concerning the exchange of goods between countries i and j. Our main parameter of
interest is βe, which captures the impact of relative energy prices on investment activity
between two country-sector pairs.

eijkl,t measures the ratio of energy prices between the acquiring and target country-
sector pairs. In our dataset, we also consider transactions in which a firm invests in a
sector distinct from its own main activity. However, when deciding the location of an
investment in a given target sector l, the investing firm is going to compare energy costs
in this sector l across locations – including its own domestic country. Between two given
country-sector pairs, the relevant energy price ratio should therefore be calculated between
the energy cost in sector l in the target country and that of the acquirer, regardless of
the acquirer’s main sector of activity. For a transaction between country-sector pairs ik
and jl, we therefore consider the following log-ratio:

eijkl,t = log
(

Ejl,t

Eil,t

)
(10)

where E is our measure of sectoral energy costs in each country, as defined in section 4.

Estimator choice and computational feasibility

To keep the estimation computationally manageable, we aggregate the original sectoral
breakdown, available in our dataset at the 4-digit SIC level, up to the 2-digit ISIC (revision
3.1) level, distinguishing 22 sectors 11 (see Table C.2 for the list of included ISIC sectors).
Despite this aggregation, our sample of 41 countries over a 20 year period yields more than
16 million potential observations12. Data availability reduces this sample size to between

11Our dataset is restricted to the manufacturing sectors both on the acquirer and target sides. In
particular, acquisitions by non-manufacturing firms are not included.

1241 origin countries × 41 target countries × 22 origin sectors × 22 destination sectors × 20 years =
16,272,080.
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6 and 8 million observations depending on the covariates included in the specifications
estimated.

As is often the case in balanced bilateral datasets, most observations in the sample
are zeros. Failure to properly take these zero values into account would lead to biased
estimates, which rules out estimations by OLS on the log of our dependent variable.
In their seminal contribution, Silva and Tenreyro (2006) show that the best estimator
in this context is Poisson Pseudo-Maximum Likelihood (PPML) with heteroscedasticity-
consistent standard errors, which can handle the potential overdispersion and consistently
outperforms potential alternatives such as zero-inflated Poisson or negative binomial. The
panel nature of our dataset requires applying clustering to the standard errors. We opt
for the most conservative design by clustering at the country-sector pair level, which is
the unit of observation in our panel.

However, the size of the dataset makes a straight maximum likelihood estimation
intractable. Instead, we make use of the PPML with high dimensional fixed effects esti-
mator13 proposed by Bergé (2018) and Correia et al. (2019).

4 Data

4.1 The Mergers and Acquisitions dataset
To implement our strategy to test the influence of energy price on investment flows, we
depart from the previous literature that relies on aggregated FDI data and instead use
bilateral firm level M&A transactions data to capture investment activity to construct
our dependent variable. Specifically, we use the number of transactions by sector and
country pair in time t as a measure of investment activity.14

Firm level M&A data is obtained from the proprietary Thomson-Reuters Mergers and
Acquisitions database. This is one of the worlds most comprehensive databases of merg-
ers and acquisitions activity, and according to the provider covers the universe of deals
globally ranging from small, undisclosed value transactions to multi-billion dollar ones
since the 1970s15. We only consider realised deals16. Reported data includes transaction
date17 and deal type, as well as a set of variables describing both acquiring and target
companies such as country of origin and main 4-digit SIC sector activity.

13A separate version of this estimator was implemented by the authors during the initial redaction of
this article, which took place before the publication of both Bergé (2018) and Correia et al. (2019). The
source code for this estimator was provided in a working paper version of the present article, LSE-GRI
Working Paper No. 311 (2018). All estimation results provided in this article were obtained using R’s
fixest package Bergé (2018) on the London School of Economics’ Fabian high-performance computing
cluster.

14Obtaining data on deal values would give a better measure of foreign capital flows, but unfortunately
M&A deal values are only reliably reported for a small subset of deals (between publicly listed companies).
Hence the number of deals represents the best approximation of investment flows given data limitations
(See Appendix D for analysis on the subset of deals where deal values are available).

15It is a trusted source used by financial, legal, corporate, government and research institutions, for
example, by the United Nation Conference on Trade and Development to compile its annual World
Investment Report (UNCTAD, 2018).

16The Thomson-Reuters database also include deals that were announced but fell through.
17We take the deal announcement date, rather than completion date. The announcement date corre-

sponds to the first public statement by any of the involved parties regarding the merger, acquisition or
acquisition of assets considered. We deem this closer to the relevant time period in which the acquirer
obtains information on production factor costs. The mean time to completion is under a month, and for
the majority of the transactions observed, both dates are identical.
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We restrict the sample in two main ways. To ensure that we select only deals that
represent significant, strategic external capital acquisitions, we restrict our sample to
deals that fall under the four main M&A deal type categories, specifically “Merger”, “Ac-
quisition of Majority Interest”, “Acquisition of Remaining Interest” and “Acquisition of
Assets” 18. Deals of different types may be driven by different motivations, such as cor-
porate strategy, access to markets, market power or production costs. “Acquisition of
Assets” deals are assessed separately in the estimation to explore this distinction because
we are primarily interested in assessing the determinants of manufacturing production
capacity acquisition. In terms of sectors, as carbon leakage primarily concerns energy
intensive and trade-exposed sectors (Sato et al., 2014), deals observed outside the manu-
facturing sectors were eliminated from the analysis. Table 1 provides an overview of our
sectoral coverage.19

Further, we reorganise the data by aggregating to the level of 2-digit (ISIC Rev 3.1)
sector level for computational feasibility, except for ‘Basic metals” sector (27). This 2-
digit sector combines Iron and steel (2710) and Non-ferrous metals (2720) and conflating
them is problematic for our analysis because the two are highly heterogeneous in terms of
energy mix and therefore energy prices. Hence we retain this separation in our analysis.20

Our ultimate sample includes a total of 69,979 deals that occurred between 1995 to
2014 across 41 countries and in 22 manufacturing sectors, of which 22,241 are cross-
border and the rest are domestic deals (see Figure A.1). The majority of deals involve
firms located in North America, Western Europe and Japan, whether as an acquirer or
target. Location of target firms are more dispersed as expected, for example with deals
involving firms in China, India, Australia, South East Asia and Brazil (see Figure A.2
and Figure A.3).

4.2 Energy prices
To test whether energy costs can explain the pattern of international cross border invest-
ments, we need to accurately assess the level of energy costs faced by the acquiring firm
at home and in target countries. Information on energy prices paid by industry at the
sector level is publicly available from some national statistical offices, but international
databases report only average industrial energy prices. We obtain unique sector-country
level energy price data from Sato et al. (2019) which offers the most comprehensive and
internationally comparable industrial energy price data to our knowledge, covering 12 in-
dustrial sectors in 32 OECD and 16 non-OECD countries between 1995 and 2015.21 While
the underlying datasets from the International Energy Agency have large gaps, the au-
thors improve the data coverage by supplementing these sources with other governmental
data and by developing transparent methods to reduce missing data points.

18Respectively, these correspond to 1) full merger with the target company; 2) increase of interest from
below to above 50% and 3) acquisition of the remaining interest already owned and 4) acquisition of
assets of a target company, subsidiary, division, production unit, branch or single plant

19In manufacturing, we exclude ISIC (Rev 3.1) sectors 36, Furniture; manufacturing n.e.c. due to the
large heterogeneity of firms included in that category which makes it impractical to attribute a single
corresponding energy price; and 37, Recycling, due to an absence of transaction observed in our dataset.

20Energy consumption for iron and steel production is dominated by coal use, while non-ferrous metals,
which comprise mostly aluminum smelting in most countries, requires principally electricity. These two
sectors are complemented respectively by Casting of iron and steel (2731) and Casting of non-ferrous
metals (2732).

21The US energy price ends in 2014. Since it represents 30% of the transactions (either as acquirer or
target), we have truncated the whole dataset to 2014.
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Table 1: Number of transactions by manufacturing subsectors (1995-2014)

Manufacturing subsector Within-country Cross-border

Chemicals and chemical products 6,839 3,649
Food and beverages 5,657 2,224
Printing and publishing 4,673 998
Machinery and equipment n.e.c. 4,507 2,834
Medical, precision and optical instruments 2,652 1,265
Fabricated metal products 2,456 1,253
Rubber and plastics products 2,221 1,221
Coke,refined petroleum products,nuclear fuel 2,201 1,073
Basic metals 2,050 896
Non-metallic mineral products 1,980 1,082
Electrical machinery and apparatus 1,808 1,021
Radio,television and communication equipment 1,772 710
Motor vehicles, trailers, semi-trailers 1,620 1,000
Textiles 1,443 699
Paper and paper products 1,258 617
Furniture; manufacturing n.e.c. 1,063 424
Other transport equipment 942 358
Wearing apparel, fur 773 193
Wood products (excl. furniture) 750 236
Office, accounting and computing machinery 814 333
Leather, leather products and footwear 206 90
Tobacco products 53 65

Acknowledging that energy costs exhibit great diversity between sectors within a coun-
try, and that differences in fuel composition is a key driver for this cross-sectoral difference,
Sato et al. (2019) computes an energy price index (Fixed Energy Price Index, FEPI) by
weighting country-level industrial fuel prices for four carriers (oil, natural gas, coal and
electricity) by the consumption of each fuel type, for a given country i, sector k and year
t, according to the following equation:

FEPIikt =
∑

j

F j
ik∑

j F j
ik

· log(P j
it) =

∑
j

wj
ik · log(P j

it) (11)

Here, F j
ik are the input quantity of fuel type j in tons of oil equivalent (TOE) for sector k

in country i and P j
it denotes the real TOE price of fuel type j for total manufacturing in

country i at time t in constant 2010 USD. The prices P j
it are expressed in real terms and

transformed into logs before applying the weights so that the log of the individual prices
enter linearly in the equation.22,23 FEPI operates in effect as a shift-share instrument:
the weights wj

ik applied to fuel prices are fixed over time, such that FEPI captures only
variation that come from changes in fuel prices, and not through changes in fuel inputs
mix over time, which could be endogenous.24

Figure 1 illustrates cross-sectoral variations by plotting the residuals of the energy price
index by sector, regressed on time fixed effects for the three most represented countries

22Note that taking the exponential of the FEPI yields the weighted geometric mean of the different
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Figure 1: Energy prices cross-sectoral variation (1995-2014)
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in our dataset – the US, Germany and the UK – over our period of observation. All three
countries exhibit substantial industrial energy price volatility over time, but patterns of
cross-sectoral variance differ significantly. This is particularly notable in energy intensive
sectors such as Chemical and petrochemical, which experienced in the US a large reduction
in energy prices that was not observed in Europe. This is a result of the collapse in natural
gas prices following the shale gas revolution in the US. Other energy intensive sectors such
as Iron and Steel and Non-metallic minerals have also experienced volatility in all three
countries. The figure illustrates that the within-sector variation in energy price over time
differs by sector and across countries, implying that an analysis simply comparing country
level energy prices may suffer from bias associated with these trends.

4.3 Other covariates
We bring together additional data sources to determine the impact of energy prices on
the foreign investment location choices. We use Exiobase 3 to observe GDP, labor in-
tensity and capital intensity at the sectoral level. The Exiobase 3 MRIO dataset is an
input-output database that provides a detailed representation of the economic activities
of countries around the world (Stadler et al., 2018). It offers a wealth of information on
the production, consumption, environmental externalities and trade of goods and services
across 163 sectors of activity in 42 major economies, allowing for the analysis of com-
plex economic interdependencies and the quantification of the environmental impacts of

fuel prices, so equation (11) is the log of the weighted geometric mean.
23The same methodology is employed in the construction of the country level index.
24The FEPI used in our main results takes average weights corresponding to the mean energy mix

over the period 1995-2015. Section 5.4 tests the robustness of the results to alternative fuel weights
specifications.
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economic activities. Exiobase 3 is increasingly used as the standard MRIO database in
environmental economic settings (e.g. Shapiro, 2021).

We also obtained from the CEPII gravity dataset (CEPII, 2018) a variable indicating
existence of free-trade agreement between country pair and time. Table A.1 presents
summary statistics for the dependent and independent variables used in the estimations.

5 Results: effects of energy prices on M&A transac-
tions

5.1 Baseline results
Table 2 shows the results from estimating specification (9) over the period 1995 to 2014.
In columns 1-3, the sample includes all deal types, whereas the sample is restricted to the
“Acquisition of assets” in columns 4-6. In columns 1 and 4, both domestic and cross-border
deals are included following our theoretical model (equation (6), but we also examine the
case of cross-border transactions only in columns 2 and 5. In columns 3 and 6, we examine
cross-border transactions between firms operating in the same sector (defined at the ISIC
2-digits level), which is the transaction type most relevant for the carbon leakage debate.
The main coefficient of interest, βe, is reported; a negative value of βe implies that firms
tend to engage in more cross-border or cross-sector domestic investments if the energy
prices they face increase relative to those in another country or sector.

We also control for other production factor costs – namely labor and capital. If firms
investment location choices are sensitive to relative energy costs at the sector level rather
than at the country level, then it is reasonable to assume that they consider other relative
production factor costs such as labour or capital costs also at the sector level (e.g. Erel
et al., 2012). Indeed, failing to capture sectoral differences and controlling for factors
only at the aggregate country level may be more problematic for inputs like labor where
variation in factor productivity are more pronounced than energy. More specifically, we
control for differences in labor productivity between sectors with sectoral cost-shares of
labor in value added, on both sides of the transaction (Head and Ries, 1996; Chen and
Moore, 2010). These cost shares are computed by taking the ratio of total sectoral labor
compensation and sectoral value added.25 A similar strategy is adopted to control for
sectoral differences in capital costs, by including the cost share of capital in value added.

In addition, all specification include sectoral GDP, a free-trade agreement dummy,
country pair fixed effects, country time fixed effects and sector fixed effects. The total

25An alternative approach is to compute a ratio of sectoral unit labor costs between each country-sector
pair in line with our theoretical model similar to Ceglowski and Golub (2012):RULCijkl = wil

wjl

eP P P
ijl

eij
with

wil = ailWil

pil
, ail = Lil

GDPil
, eP P P

ijl = pil

pjl
where Wil is the average annual wage in country i and sector

l (national currency), pil is the sectoral price index, Lil is the sectoral labor employment, and ail is the
sectoral unit labor requirement (the inverse of productivity). eij is the market exchange rate between
countries i and j. eP P P

ijl is the sectoral purchasing power parity exchange rate for sector l between
countries i and j. The RULC equation implies that relative unit labor costs between two country-sector
pairs depend on relative sectoral labor productivity, relative sectoral real wages, and the ratio between the
sectoral PPP exchange rate and the aggregate market exchange rate. Yet data issues limit the feasibility
of this approach e.g. sector level PPP exchange rates are available only for some 2-digit ISIC sectors for a
few countries in 2005 (The Groningen Growth and Development Center’s Productivity Level Database).
Furthermore, heterogeneity of skilled labour quality across countries and sectors is ignored here, which
could also bias unit labor cost ratio estimates (Noorbakhsh et al., 2001).
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Table 2: Main results

All transactions Acq. of Assets
All Cross-border Horizontal All Cross-border Horizontal
(1) (2) (3) (4) (5) (6)

log(eijkl,t) -0.316*** -0.301*** -0.321*** -0.388*** -0.358*** -0.350***
(0.097) (0.097) (0.099) (0.120) (0.120) (0.120)

log(GDPik,t) 0.665*** 0.656*** 0.628*** 0.679*** 0.674*** 0.644***
(0.053) (0.024) (0.025) (0.063) (0.028) (0.029)

log(GDPjl,t) 0.655*** 0.651*** 0.638*** 0.670*** 0.673*** 0.663***
(0.052) (0.022) (0.023) (0.062) (0.026) (0.027)

log(Lint
ik,t) 0.184* 0.365*** 0.319*** 0.324*** 0.360*** 0.329***

(0.102) (0.069) (0.068) (0.114) (0.087) (0.084)
log(Lint

jl,t) 0.140* 0.129** 0.080* 0.288*** 0.159** 0.094
(0.082) (0.052) (0.049) (0.109) (0.068) (0.062)

log(Kint
ik,t) 0.037 0.146*** 0.107*** 0.050 0.143*** 0.102**

(0.080) (0.041) (0.041) (0.095) (0.048) (0.047)
log(Kint

jl,t) 0.027 0.088** 0.044 0.056 0.123*** 0.064
(0.077) (0.034) (0.034) (0.093) (0.043) (0.041)

FTA Yes Yes Yes Yes Yes Yes
Country-pair FE Yes Yes Yes Yes Yes Yes
Acq. sector FE Yes Yes Yes Yes Yes Yes
Tar. sector FE Yes Yes Yes Yes Yes Yes
Acq. country-year FE Yes Yes Yes Yes Yes Yes
Tar. country-year FE Yes Yes Yes Yes Yes Yes

AIC 463,901 214,846 111,823 308,715 143,092 79,185
Observations 7,472,422 6,781,642 800,040 5,490,973 4,845,490 665,607
* p < 0.1, ** p < 0.05, *** p < 0.01

Notes: Table 2 presents estimates of coefficient βe in specification (9), controlling for sectoral
GDP, sectoral labor and capital intensity, and a rich set of fixed effects including country-pair,
acquiring and target sector, acquiring and target country-year, and a free trade agreement
indicator. Standard errors are clustered at the country-sector pair level.

number of transactions actually observed in the sample is much smaller than the number
of observations which includes all combinations of country-sector-year in which we observe
covariates because no transactions occurred for most combinations.26.

In all specifications, and consistent with existing literature, we find that relative energy
prices have a significant impact on firms’ investment location decisions. Specifically, we
find that an increase in the energy price differential between country-sector pairs leads to
an increase in investment flows toward the lower energy cost country-sector pair. This re-
sult holds for all types of transactions, including cross-border and horizontal transactions.
Furthermore, the impact of energy price differentials on industrial investment location is
stronger for acquisition of assets transactions compared to all other types of transactions.

In terms of effect size, an estimate for βe of -0.3 implies that a 10% increase in the
relative industrial energy price differential between two countries is expected to increase

26Hence, restricting the sample to cross-border transactions does not impact the sample size signifi-
cantly, but it does reduce the number of transactions observed by nearly 70%. This is coherent with the
share of cross-border transactions reported in section 4.1
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the number of cross-border acquisitions by 3%. We also note that controls enter with
the expected relative magnitudes, with target country-sector pairs offering a lower labor
cost intensity, while capital intensity is higher in acquiring country-sectors. Combined
with our rich set of additional controls, including country-pair, year and sectoral fixed
effects, this allows our specification to identify the specific impact of energy prices on
firms’ investment decisions.

We find that the elasticity of industrial investment activity with respect to relative
energy prices is -0.316 for all transactions and -0.301 when restricting the sample to cross-
border transactions. We also examine the subset of transactions where the acquiring and
target firms operate in the same industrial sector27, since drivers for horizontal (within the
same sector) and vertical transactions (across sectors) have been found to vary.28 It may be
hypothesised that horizontal deals are more sensitive to energy cost differentials because
such a deal represents the offshoring of production capacity abroad, while a vertical deal
may represent different objectives e.g. to acquire firms upstream or downstream in its
own supply chain or to diversify its product portfolio (Erel et al., 2012). Indeed, we find a
larger elasticity of -0.321 on the subset of cross-border horizontal transactions – although
it should be noted that all estimates for columns (1)-(3) are not statistically different
from one another. Combined, these results indicate that relative energy prices impact the
choice of investment location of manufacturing firms for all types of transactions.

Furthermore, we find that the impact of energy prices on investment location decisions
tend to be stronger for acquisition of assets transactions – although this difference is not
by itself statistically significant. These transactions involve the purchase of a subset
of given a target company – e.g. a division, a production site or even a single plant.
As such, they are even closer to the The estimate for βe is -0.388 for all acquisition of
assets transactions, -0.358 for cross-border acquisition of assets transactions, and -0.350
for horizontal acquisition of assets transactions. These results tend to suggest that an
increase in energy price differentials leads to a larger impact on investments carried out
as acquisition of assets transactions compared to other types of transactions.

Overall, our results suggest that once a firm decides to invest,then among the mul-
titude of factors that affect the location choice such as business environment, access to
local markets and availability of skilled labour, relative energy costs is indeed a relevant
factor. Yet this aggregate results may hide a significant degree of heterogeneity across
geographies, sectors or particular supply chain links. We now turn to the potential het-
erogeneous effects of relative energy price on investment location in the remainder of this
section.

5.2 Developed vs emerging economies
A central concern surrounding environmental policies implementation is the fear that high
regulatory costs can force firms to shift manufacturing capacity to low-cost countries –
the pollution haven hypothesis. While we cannot directly assess whether firms will dispro-
portionately increase investment in developing nations when the energy price gap widens,
we are able to test if the number of deals is more sensitive to energy price differences for
North to South deals. To do so we interact our coefficient of interest βe in specification (9)
with an indicator variable for whether the deal is between two OECD countries, OECD

27Identified at the 2-digits ISIC level
28For example Hijzen et al. (2008) find that horizontal mergers are less negatively affected by trade

costs, consistent with the tariff-jumping argument)
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to non-OECD, non-OECD to OECD, or two non-OECD.

Figure 2: Impact of relative energy prices as a function of OECD membership
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Notes: Figure 2 presents estimates of coefficient βe in specification (9) when interacting the rel-
ative difference in energy prices with dummies indicating whether the acquiring and target firms
are based in OECD or non-OECD countries. Note that for OECD to non-OECD transactions,
estimates on all and cross-border deals are identical. Transactions originating from non-OECD
acquirers, which represent a very small share of the sample of the sample (8.6%) are reported
in Table B.1. Error bars represent 95% confidence intervals.

We find that while the majority of deals are between firms based in OECD countries,
the effect of relative energy costs on investment activity is small and not significant for
these deals, but are more pronounced and significant for deals involving an OECD-based
acquirer and non-OECD target (around -0.5 for all transaction types and -0.65 for the
acquisition of assets) (See Appendix Table B.1).

Further exploring heterogeneity across cross-border and horizontal transactions (Fig-
ure 2 and Appendix Table B.1) reveals that for acquisitions within the same sector, relative
energy prices matter even when both the acquirer and target firms are OECD-based, but
especially when the deal is between an OECD-based and non-OECD firm. This finding
is of particular relevance in the context of economic, political or geopolitical shocks that
have opened large energy and carbon price gaps between OECD countries, such as e.g.
the shale oil and gas revolution in the United States, or more recently the invasion of
Ukraine by the Russian Federation in Europe, as well as green deal or climate policies
(World Bank, 2022).

By contrast, acquisitions originating from non-OECD countries consistently exhibit a
statistically significant effect of relative energy prices except for horizontal transactions.
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These deals with non-OECD acquirers only represent only 10% of the transactions in our
sample, however. Estimates for βe are larger for this subset, ranging from -0.55 to -1.17
for all transaction types (see Appendix Table B.1) but less precisely estimated due to
smaller sample size.

5.3 Sectoral heterogeneity
Another indication that multinationals seek out weaker environmental policies or lower
input factor costs by investing in developing nations is if foreign investments flow dispro-
portionately in dirty industries relative to cleaner ones. The prediction that the effect
of energy price on foreign investment decisions is more pronounced in energy intensive
sectors where energy costs represent a higher share of overall production costs is broadly
supported by empirical papers (e.g. Panhans et al., 2016; Aldy and Pizer, 2015; Sato and
Dechezleprêtre, 2015). Here we delineate groups of sectors defined by their energy inten-
sity – low energy intensity (energy cost share of less than 1.5%); medium intensity (1.5%
and 4%); and high intensity (above 4%)29.

Figure 3: Impact of relative energy prices as a function of sectoral energy intensity
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The top panel of Figure 3 presents evidence of sectoral differences when considering
our entire sample. High energy intensity sectors consistently exhibit a greater sensitivity

29The cutoffs have been chosen to balance the three groups, regarding both the number of sectors and
the number of transactions observed in each group. Energy intensity is measured as share of energy costs
in the total real output of each sector as measured by value added. Energy use data is obtained from the
IEA, which is then combined with our energy price index and UNIDO’s sectoral value added to yield our
energy intensity indicator. The mean energy intensity of each sector over our entire sample is presented
in Figure A.4.

17



to relative energy prices with a βe estimate of -0.45 across all transactions, compared
with -0.27 and -0.26 for low and medium intensity sectors - although that difference is not
statistically significant (Z-score of 1.13). Results are very similar when we restrict the
sample to cross-border deals, while βe heterogeneity is less pronounced when restricting
the sample to horizontal deals (See also Appendix Table B.2).

In the bottom panel of Figure 3, we focus on the subset of transactions involving
OECD-based acquirers and targets - which represents 85% of our sample. As expected,
transactions involving acquirers in low intensity sectors are not driven by energy price
differentials. However, where the acquirer operates in a high energy intensity industry,
deals are sensitive to energy prices with βe between -0.32 and -0.35 (See also Appendix
Table B.3). For deals with acquirers in medium energy intensity sectors, energy price
differences matter only for cross-border horizontal deals.

Overall, our results uncover how effects of energy prices on investment decisions are
highly heterogeneous. Our aggregate results in 5.1 suggests that relative energy prices
matter for industrial investment location decisions, in line with the pollution haven hy-
pothesis. Yet exploring geographical and sectoral heterogeneity reveals that the effect is
in fact concentrated in a well delineated subset of transactions. Specifically, variations
in energy costs across different sectors and countries can explain patterns of investment
location only for cross-border and horizontal acquisitions in high energy intensity sectors
within the OECD, and North to South deals. These subsets of transactions represent
19.7% of all transactions observed. Previous studies have found that carbon leakage risk
is focused on a few subsectors of the economy. Our result quantifies this, in relation to
the risk on investment leakage.

5.4 Robustness checks
We test the sensitivity of our results to key assumptions. First we control for the potential
endogeneity of current-period sectoral energy prices in both acquirer and target countries,
by using the one-year lag of energy prices in the specification. Cross-border investments
may result in increased (reduced) economic activity in the target (acquiring) country,
impacting energy demand and prices. We also relax the assumption that firms react to
changes in energy prices within a year and consider an alternative hypothesis from the
trade literature that in fact firms respond to exogenous price or policy signals over a
multiple year period (e.g. Head and Mayer, 2014). To do so, we follow Hijzen et al. (2008)
and aggregate our dataset over two, three and four-year intervals by taking the mean of
the dependent variable and of each regressor30 over the interval considered:

xτ
t =

t+τ−1∑
t′=t

xt′

τ
, with τ ∈ {2, 3, 4} (12)

The magnitude and significance of the effects of relative energy price remain stable (Table
B.4 in the Appendix), and the estimate of βe is not statistically significantly different from
baseline model estimates. It is interesting to see that firms’ response to relative energy
prices appear consistent in the short- and long-run, strengthening the validity of our static
model.

Second, we examine the sensitivity of our results to the energy price index used.
We replicate our results using an alternative energy price index from Sato et al. (2019).

30x ∈ {mijkl, eijkl, GDPik, GDPjl, Lint
ik , Lint

jl , Kint
ik , Kint

jl }
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Specifically we consider the variable-weight energy price level (VEPL), where the weight
vary yearly to reflect the actual energy mix observed, and energy prices are observed
at current market exchange rates. The magnitude and sign of the βe estimated using
VEPL are smaller but consistent with our main results (Table B.5). Using an energy
price index with variable weights is expected to give rise to a downward bias on the effect
of relative energy prices because sectors do indeed switch between fuels in response to
prices.31 Third, as some countries dominate global M&A activity, we test if the results
are driven by a particular key country,32 by excluding a country at a time both on the
acquiring and target sides (Table B.6). The results for our relative energy price remains
stable between -0.29 and -0.36.

6 Counterfactual carbon pricing simulation
We now explore whether these relative energy price effects are economically important.
While more than forty countries have implemented a form of carbon pricing policy (World
Bank, 2022), the price levels set by most of these initiatives fall short of the target range of
$40-$80/tCO2 recommended by the recent Stern-Stiglitz Commission (Stern and Stiglitz,
2017). This section presents results from a simple simulation of the potential impact on
global M&A activity, if a leading climate coalition implements a carbon tax that leads
to a carbon price gap of $50/tCO2, using our model of investment location (equation
(6)) and the parameters we estimated in section 5. We seek to quantify the degree to
which relative carbon prices affect patterns of foreign investment. Three different policy
scenarios representing increasing degrees of international collaboration are simulated: 1)
the European Union implements the carbon tax unilaterally; 2) EU and OECD member
countries except the United States, implement the carbon tax and;33. 3) all countries in
our sample implement the carbon tax.34

The simulation involves the following steps. First we calculate the increase in the
energy price that results from the implementation of the carbon tax using the carbon
content of fossil energy carriers and electricity. Our strategy to estimate the impact of
relative carbon prices on investment activity is estimated as follows:

m∗
ijkl

mijkl

=
(

e∗
ijkl

eijkl

)βe,ij Ωijkl

Ω∗
ijkl

(13)

where the star denotes the counterfactual number of transactions, relative energy prices
and multi-lateral resistance terms impacted by carbon taxation, and βe,ij are coefficient
estimates from section 5.2 reflecting geographic heterogeneity. The second step involves

31Further, we tested the sensitivity of results to the choice of time period for the weights used for FEPI.
In the baseline specification, weights are calculated using the average energy mix over the entire period
of observation. Results remain stable when apply weights based on the energy mix observed in 2005.

32The top 5 target countries in our dataset being the United States (30% of all transactions observed),
the United Kingdom (9%), Germany (8%), France (6%) and Japan (5%) and the rankings and proportions
being similar on the acquiring side.

33This scenario is for example consistent with the period during which of the US government had chosen
to pull out of the Paris Agreement. ‘Donald Trump confirms US will quit Paris climate agreement’, The
Guardian, June 1st, 2017

34Note that in all variants, we consider the gross impact in the absence of anti-leakage policies such as
free allocation in emissions trading or border carbon adjustment (Morris, 2018). These measures would
moderate the impacts describe here.
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computing an updated set of Ω∗
ijkl using the carbon tax augmented energy prices35 before

finally estimating the impact of the carbon tax on the number of cross-border transactions
using Equation (13). This methodology ensures that changing relative energy prices in a
subset of countries modifies the multi-lateral resistance terms Ωijkl for the entire dataset.
This is important because implementing a carbon tax in country j affects investments
received from another country i both directly through changes to the relative energy
costs, but also indirectly through changes in the attractiveness of j against all other
countries as measured by Ωijkl.36 It is important to note, however, that this strategy
does not yield general equilibrium effects and the results reflect lower bounds on the true
magnitude of the effects.37

Figure 4: Impacts of an $50/tCO2 carbon price gap (high carbon price in EU only
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Note: The impact is expressed as the change in number of firms acquired in relative terms against a 2010
baseline.

We report simulation results for the year 2010, which offers the widest coverage in
our dataset. In the first scenario, investment activity targeting EU firms falls by 4.8%
on average (Figure 4 and Table B.6). The effect is heterogeneous across the EU, due
to variation in energy mix and OECD/non-OECD status.38 Other regions experience
a 0.6% increase in the number of their expected inbound transactions. The effect is
homogeneous in all regions outside of the EU as a result of the conditional equilibrium

35The calculation of Ωijkl requires information on both the acquiring and target sides. The reference
cross-section includes more than 700,000 observations. Computing the multi-lateral resistance terms thus
involves calculations on a 700,000 × 700,000 matrix, which is impractical on commodity hardware. The
algorithm was therefore implemented on high-performance Nvidia Tesla V100 GPU using the Google
Compute Engine. This custom implementation brought down the run-time to compute a single set of
Ωijkl from 19 hours to a more manageable 30 min, thereby making the present simulations feasible.

36By analogy with the structural gravity literature, a simpler approach that only consider the direct
impacts resulting from the change in bilateral relative energy costs – term

(
e∗

ijkl

eijkl

)βe,ij

in equation (13) –
would yield partial equilibrium effects, while our approach is equivalent to what Yotov et al. (2013) label
conditional equilibrium effects.

37In particular, we cannot consider in our framework the impact of the carbon tax on sectoral and
aggregate economic activity, nor on firm entry and exit. Taking into account the consequences of reduced
foreign investments on domestic activity would reduce the relative attractiveness of countries that imple-
ment a carbon tax even more, further increasing the negative impact of the tax on investment inflows.
Detailed analysis of these general equilibrium aspects is left to future inquiries.

38For example, the impact ranges from -0.8% in Sweden to -16.1% in Bulgaria.
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approach adopted.39 In the second scenario where other developed countries join the
EU’s climate action except for the US, the negative impact is reduced in Europe to -4.1%
(Figure B.1). In the case of a global carbon tax under the third scenario, investments
into Europe barely change (-0.2%) (e.g. in Norway by 3.4% and in Sweden by 3.1%) but
falls sharply in non-OECD, high carbon intensity countries such as China, India, Russia,
and South Africa (between 12% and 33%, Figure B.1). We conclude that while large
carbon price gaps can impact investment location choices, the magnitude of the effect is
modest for developed economies, even in the absence of anti-leakage measures such as free
allocation of permits in emissions trading. This does not negate concerns about carbon
leakage for energy-intensive industrial sectors, as we go on to discuss next.

7 Conclusion
The recent empirical literature recognises that exploiting the variation in the relative en-
ergy price between potential target and acquirer is a more relevant and aligned with the
theory that models FDI flows and firm location patters as a function of international
differences in factor endowments which focuses on the comparative cost advantage (Help-
man, 1984). For example, Garsous et al. (2020) use the difference between domestic and
Chinese energy prices to proxy for relative energy prices, and test its effect on interna-
tional assets of firms in the OECD. Arezki et al. (2017) instead uses the gas price gap
between the US and OECD-Europe as the main coefficient of interest to explain patterns
of export, output, and other outcome measures following the shale gas revolution in the
US. These are relatively crude measures of relative price gap of energy. Instead, Man-
derson and Kneller (2020) uses a bilateral setting, UK-US natural gas price gap and the
overall energy price gap using data from Sato et al. (2019), to assess UK firms’ propensity
to invest in the US and reduce production in the UK. These approaches are in contrast
with previous work that exploit energy price variation over time within the target country
(e.g. Panhans et al., 2016) to explain aggregated FDI flows.

To advanced this literature, we adopt an empirical framework drawing on the recent
literature on the determinants of cross-border investments, which use bilateral investment
flows and a base model consisting of gravity-type covariates, borrowing from the empirical
bilateral trade literature. To our knowledge, we are the first to adopt the dartboard model
of M&A (Head and Ries, 2008) to derive a model linking location choice in bilateral FDI to
relative energy prices. We have collected global, detailed bilateral FDI data to implement
the model. This extensive coverage of our data is a major contribution with high external
validity of results, for example compared to the UK-US study by Manderson and Kneller
(2020).40. In the context of the leakage and industrial offshoring debates, it is especially
valuable that our sample covers key developing countries such as China and India, which
are the most relevant countries.

Further, the large sample size gives greater statistical power which is important, be-
cause if any the effects of energy prices on FDI tends to be small and may not be possible
to detect with small sample data. Relatedly with limited geographical coverage, the lack
of variation in other determinants of production location is problematic for identification.
The bilateral structure with sufficiently disaggregated data that we use has a further ad-

39The positive effect on each country’s relative attractiveness is averaged into an aggregate impact by
the adjustments in the multi-lateral resistance terms.

40This study has the advantage of using micro data and also an exogenous shock (the US Shale gas
revolution)
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vantage in that we can control for a multitude of confounding factors. This allows for the
estimation of regulatory effects that are purged of bias associated with country-pair and
industry specific trends. This is particularly important because, during this period, there
were many factors (e.g., supply chain integration, trade agreements, technology changes)
that may have had differential impacts on sector-level FDI.

In sum, we have been able to provide a more complete and robust empirical assessment,
and more nuanced understanding of the impact of relative energy prices on FDI location.
For example, Manderson and Kneller (2020)’s finding that UK firms with high energy
intensity are more likely to invest in the US following the shale gas revolution is consistent
with our finding that FDI bewteen OECD countries are sensitive to energy price difference
in the case of cross-boarder horizontal deals. We are able to show that this is a special
case, and cannot be generalised to non-horizontal deals and for deals involving low energy
intensive sectors.

Overall our results suggest that while large energy and carbon price gaps can impact
investment location choices, the magnitude of the effect is modest for developed economies,
even in the absence of anti-leakage measures such as free allocation in emissions trading.
This does not negate concerns about investment and carbon leakage for energy-intensive
industrial sectors. For example, our findings that the effect of the energy price gap
is particularly significant for North-South deals underscores the importance of covering
non-OECD trade anti-leakage measures such as carbon boarder adjustment measures
(CBAM), while this raises multiple international equity concerns (Grubb et al., 2022). The
fact that we find energy price differences also matter for OECD to OECD horizontal deals
suggests the importance of harmonising climate policy stringency within industrialised
nations, especially for the most energy intensive sectors to prevent leakage. On the other
hand, our finding that this effect is highly heterogeneous but modest overall supports
previous findings that leakage protection such as free allocation should be targeted (e.g.
Martin et al., 2014; Fowlie and Reguant, 2022) and used sparingly so as to reduce its
downsides in weakening mitigation incentives for industry. Indeed it suggest that rather
than expending excessive political capital on pursuing specific leakage measures, resources
may be better spent on efforts to establish a robust framework to support rapid industrial
decarbonisation (e.g. Neuhoff et al., 2021; OECD, 2022).

Our analysis can be extended in several directions. The dataset could be augmented
with more comprehensive data on the value of the transactions observed, to improve
the quantification of the effect. Alternatively, an analysis focused on the subset of the
transactions involving listed companies, for which relevant covariates at the firm level
are publicly available, could be conducted. The model developed in this paper could be
further extended to a full structural gravity model, which would allow the estimation of
general equilibrium effect of relative energy prices on industrial investment location. This
and other extensions are left for future research.
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A Complementary descriptive statistics

Figure A.1: Number of transactions in the manufacturing sector by acquiring and target
country (1995-2014)
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Figure A.2: Map of total transactions by acquiring firm location (1995-2014)

Figure A.3: Map of total transactions by target firm location (1995-2014)
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Table A.1: Summary statistics

Variable Mean Std. Dev. 25th perc. Median 75th perc. Obs.

Bilateral
Transactions 0.01 0.31 0.00 0.00 0.00 10,610,945
Energy price difference -0.02 0.58 -0.38 0.00 0.33 8,876,420

Acquirer
log GDP 21.84 2.55 20.45 21.77 23.07 10,610,945
Labor cost-share 0.56 0.20 0.46 0.59 0.69 10,422,960
Capital cost-share 0.15 0.11 0.09 0.13 0.19 10,422,960

Target
log GDP 21.62 2.55 20.15 21.63 22.98 10,610,945
Labor cost-share 0.54 0.20 0.43 0.57 0.68 10,288,007
Capital cost-share 0.15 0.11 0.09 0.13 0.19 10,288,007

Figure A.4: Mean cost-share of energy by sector (All countries, 1995-2014)
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B Complementary results

Figure B.1: Implementation of a $50/tCO2 carbon tax by EU and OECD countries
except the U.S.
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Figure B.2: Implementation of a $50/tCO2 carbon tax by all countries
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Table B.1: Impact of relative energy prices as a function of OECD membership

All transactions
All Cross-border Horizontal
(1) (2) (3)

log(eijkl,t) (OECD to OECD) -0.180 -0.181 -0.280**
(0.123) (0.121) (0.130)

log(eijkl,t) (OECD to non-OECD) -0.499*** -0.529***
(0.160) (0.149)

log(eijkl,t) (Non-OECD to OECD) -0.729*** -0.069
(0.229) (0.228)

log(eijkl,t) (Non-OECD to non-OECD) -1.146*** -1.174*** -0.547
(0.384) (0.369) (0.359)

log(GDPik,t) 0.665*** 0.656*** 0.629***
(0.053) (0.024) (0.025)

log(GDPjl,t) 0.657*** 0.653*** 0.640***
(0.052) (0.022) (0.023)

log(Lint
ik,t) 0.184* 0.365*** 0.320***

(0.102) (0.069) (0.068)
log(Lint

jl,t) 0.140* 0.129** 0.079
(0.082) (0.052) (0.048)

log(Kint
ik,t) 0.037 0.146*** 0.108***

(0.080) (0.041) (0.041)
log(Kint

jl,t) 0.026 0.085** 0.043
(0.077) (0.034) (0.034)

FTA Yes Yes Yes
Country-pair FE Yes Yes Yes
Acq. sector FE Yes Yes Yes
Tar. sector FE Yes Yes Yes
Acq. country-year FE Yes Yes Yes
Tar. country-year FE Yes Yes Yes

AIC 463,866 214,818 111,818
Observations 7,472,422 6,781,642 800,040
* p < 0.1, ** p < 0.05, *** p < 0.01

Notes: Table B.1 presents estimates from the same specification form and samples as columns
(1)-(3) in Table 2. However, the explanatory variable log(eijkl,t) is interacted with two variables
indicating whether the acquiring (resp. target) firm is OECD-based or not. All results estimated
with a Poisson Pseudo-Maximum Likelihood estimator. Standard errors are clustered at the
acquiring-target country-sector pair level.
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Table B.1: Impact of relative energy prices as a function of OECD membership (cont.)

Acq. of Assets
All Cross-border Horizontal
(1) (2) (3)

log(eijkl,t) (OECD to OECD) -0.005 -0.226 -0.300*
(0.088) (0.148) (0.153)

log(eijkl,t) (OECD to non-OECD) -0.653*** -0.665***
(0.203) (0.188)

log(eijkl,t) (Non-OECD to OECD) -0.845*** -0.043
(0.271) (0.267)

log(eijkl,t) (Non-OECD to non-OECD) -0.163 -1.219** -0.383
(0.501) (0.549) (0.473)

log(GDPik,t) 0.161*** 0.674*** 0.645***
(0.061) (0.028) (0.029)

log(GDPjl,t) 0.164*** 0.676*** 0.667***
(0.058) (0.026) (0.027)

log(Lint
ik,t) 0.015 0.360*** 0.331***

(0.022) (0.087) (0.084)
log(Lint

jl,t) 0.009 0.157** 0.092
(0.019) (0.068) (0.062)

log(Kint
ik,t) -0.065 0.143*** 0.103**

(0.086) (0.048) (0.047)
log(Kint

jl,t) -0.077 0.120*** 0.063
(0.086) (0.043) (0.041)

FTA Yes Yes Yes
Country-pair FE Yes Yes Yes
Acq. sector FE Yes Yes Yes
Tar. sector FE Yes Yes Yes
Acq. country-year FE Yes Yes Yes
Tar. country-year FE Yes Yes Yes

AIC 88,493 143,071 79,181
Observations 20,710 4,845,490 665,607
* p < 0.1, ** p < 0.05, *** p < 0.01
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Table B.2: Impact of relative energy prices as a function of sectoral energy intensity

All transactions
All Cross-border Horizontal
(1) (2) (3)

log(eijkl,t) (Low int.) -0.266*** -0.241** -0.283***
(0.100) (0.098) (0.100)

log(eijkl,t) (Med. int.) -0.256** -0.253** -0.352***
(0.106) (0.116) (0.121)

log(eijkl,t) (High int.) -0.448*** -0.423*** -0.357***
(0.126) (0.120) (0.117)

log(GDPik,t) 0.665*** 0.657*** 0.629***
(0.053) (0.024) (0.025)

log(GDPjl,t) 0.655*** 0.651*** 0.637***
(0.052) (0.022) (0.023)

log(Lint
ik,t) 0.185* 0.367*** 0.319***

(0.102) (0.068) (0.068)
log(Lint

jl,t) 0.140* 0.129** 0.079
(0.082) (0.052) (0.049)

log(Kint
ik,t) 0.039 0.151*** 0.109***

(0.081) (0.041) (0.041)
log(Kint

jl,t) 0.027 0.088** 0.043
(0.077) (0.034) (0.034)

FTA Yes Yes Yes
Country-pair FE Yes Yes Yes
Acq. sector FE Yes Yes Yes
Tar. sector FE Yes Yes Yes
Acq. country-year FE Yes Yes Yes
Tar. country-year FE Yes Yes Yes

AIC 463,868 214,815 111,822
Observations 7,472,422 6,781,642 800,040
* p < 0.1, ** p < 0.05, *** p < 0.01

Notes: Table B.2 corresponds to the upper panel of Figure 3. It presents estimates from the
same specification form and samples as columns (1)-(3) in Table 2. However, the explanatory
variable log(eijkl,t) is interacted with an indicator variable measuring whether the acquiring
sector’s energy intensity is high (> 4%), medium (1.5% to 4%) or low (< 1.5%). All results
estimated with a Poisson Pseudo-Maximum Likelihood estimator. Standard errors are clustered
at the acquiring-target country-sector pair level.
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Table B.3: Impact of relative energy prices as a function of sectoral energy intensity
(within OECD)

OECD to OECD transactions
All Cross-border Horizontal
(1) (2) (3)

log(eijkl,t) (Low int.) -0.091 -0.094 -0.196
(0.122) (0.118) (0.133)

log(eijkl,t) (Med. int.) -0.196 -0.195 -0.312**
(0.136) (0.150) (0.154)

log(eijkl,t) (High int.) -0.324* -0.321** -0.348**
(0.170) (0.159) (0.152)

log(GDPik,t) 0.665*** 0.659*** 0.631***
(0.053) (0.024) (0.025)

log(GDPjl,t) 0.657*** 0.653*** 0.641***
(0.052) (0.022) (0.023)

log(Lint
ik,t) 0.185* 0.368*** 0.319***

(0.102) (0.068) (0.068)
log(Lint

jl,t) 0.140* 0.129** 0.080*
(0.082) (0.052) (0.048)

log(Kint
ik,t) 0.039 0.152*** 0.112***

(0.081) (0.041) (0.041)
log(Kint

jl,t) 0.026 0.085** 0.041
(0.077) (0.034) (0.034)

FTA Yes Yes Yes
Country-pair FE Yes Yes Yes
Acq. sector FE Yes Yes Yes
Tar. sector FE Yes Yes Yes
Acq. country-year FE Yes Yes Yes
Tar. country-year FE Yes Yes Yes

AIC 463,785 214,757 111,815
Observations 7,472,422 6,781,642 800,040
* p < 0.1, ** p < 0.05, *** p < 0.01

Notes: Table B.3 corresponds to the lower panel of Figure 3. It presents estimates from the same
specification form as columns (1)-(3) in Table 2, estimated on the subset of transactions involving
acquiring and target firms based in the OECD. However, the explanatory variable log(eijkl,t) is
interacted with an indicator variable measuring whether the acquiring sector’s energy intensity
is high (> 4%), medium (1.5% to 4%) or low (< 1.5%). All results estimated with a Poisson
Pseudo-Maximum Likelihood estimator. Standard errors are clustered at the acquiring-target
country-sector pair level.
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Table B.4: Robustness to time lag

1-year lag 2-year averages 3-year averages 4-year averages
(1) (2) (3) (4)

log(eijkl,t−1) -0.300***
(0.096)

log(eijkl,t) -0.340*** -0.343*** -0.363***
(0.097) (0.098) (0.096)

log(GDPik,t) 0.661*** 0.657*** 0.656*** 0.658***
(0.053) (0.054) (0.053) (0.054)

log(GDPjl,t) 0.652*** 0.647*** 0.644*** 0.647***
(0.052) (0.053) (0.053) (0.053)

log(Lint
ik,t) 0.189* 0.503*** 0.557*** 0.565***

(0.104) (0.103) (0.112) (0.113)
log(Lint

jl,t) 0.146* 0.478*** 0.563*** 0.550***
(0.085) (0.104) (0.114) (0.116)

log(Kint
ik,t) 0.033 0.122 0.143 0.143

(0.080) (0.089) (0.092) (0.095)
log(Kint

jl,t) 0.023 0.119 0.143 0.142
(0.076) (0.086) (0.090) (0.092)

FTA Yes Yes Yes Yes
Country-pair FE Yes Yes Yes Yes
Acq. sector FE Yes Yes Yes Yes
Tar. sector FE Yes Yes Yes Yes
Acq. country-year FE Yes Yes Yes Yes
Tar. country-year FE Yes Yes Yes Yes

AIC 456,537 421,377 399,299 386,270
Observations 7,053,763 4,181,988 2,878,220 2,450,299
* p < 0.1, ** p < 0.05, *** p < 0.01

Notes: Table B.4 presents estimates from a specification and sample identical to that of column
(1) in Table 2. Column (1) uses the 1-year lag of our energy price difference as dependent
variable. In columns (2)-(4) we aggregate the dataset at 2-, 3- and 4-year time steps respectively,
then estimate specification (9) as usual. While the number of observations is reduced by the
aggregation procedure, the sample covered is identical in columns (2)-(4). All results estimated
with a Poisson Pseudo-Maximum Likelihood estimator. Standard errors are clustered at the
acquiring-target country-sector pair level.
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Table B.5: Main results using the VEPL energy price index

All transactions Acq. of Assets
All Cross-border Horizontal All Cross-border Horizontal
(1) (2) (3) (4) (5) (6)

log(eV EP L
ijkl,t ) -0.197* -0.169 -0.314*** -0.279** -0.231* -0.365**

(0.110) (0.107) (0.120) (0.136) (0.132) (0.145)
log(GDPik,t) 0.658*** 0.654*** 0.558*** 0.671*** 0.670*** 0.583***

(0.057) (0.027) (0.048) (0.069) (0.032) (0.055)
log(GDPjl,t) 0.648*** 0.648*** 0.562*** 0.663*** 0.669*** 0.582***

(0.055) (0.024) (0.046) (0.067) (0.029) (0.054)
log(Lint

ik,t) 0.160 0.297*** 0.194 0.300** 0.290*** 0.325**
(0.099) (0.073) (0.135) (0.123) (0.094) (0.150)

log(Lint
jl,t) 0.131 0.117** 0.139 0.277** 0.141** 0.294**

(0.082) (0.053) (0.109) (0.117) (0.071) (0.148)
log(Kint

ik,t) 0.018 0.103** -0.002 0.024 0.087* 0.004
(0.086) (0.045) (0.061) (0.102) (0.051) (0.067)

log(Kint
jl,t) 0.010 0.063* -0.027 0.033 0.092* -0.002

(0.082) (0.037) (0.056) (0.099) (0.047) (0.064)

FTA Yes Yes Yes Yes Yes Yes
Country-pair FE Yes Yes Yes Yes Yes Yes
Acq. sector FE Yes Yes Yes Yes Yes Yes
Tar. sector FE Yes Yes Yes Yes Yes Yes
Acq. country-year FE Yes Yes Yes Yes Yes Yes
Tar. country-year FE Yes Yes Yes Yes Yes Yes

AIC 422,647 187,312 178,478 282,613 125,145 128,233
Observations 5,804,212 5,223,577 683,605 4,312,137 3,753,565 592,072
* p < 0.1, ** p < 0.05, *** p < 0.01

Notes: Table B.5 presents estimates of coefficient βe in specification (9), using the energy price
index with time-variable sectoral shares (VEPL)to construct the dependent variable, eV EP L

ijkl,t .
We control for sectoral GDP, sectoral labor and capital intensity, and a rich set of fixed effects
including country-pair, acquiring and target sector, acquiring and target country-year, and a free
trade agreement indicator. All results estimated with a Poisson Pseudo-Maximum Likelihood
estimator. Standard errors are clustered at the acquiring-target country-sector pair level.
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Table B.6: Robustness to the removal of the most represented countries in the dataset

All transactions
Without Without Without Without Without
the US the UK Germany France Japan

(1) (2) (3) (4) (5)

log(eijkl,t) -0.357*** -0.337*** -0.294*** -0.291*** -0.333***
(0.081) (0.108) (0.104) (0.103) (0.105)

log(GDPik,t) 0.704*** 0.651*** 0.660*** 0.664*** 0.674***
(0.040) (0.057) (0.059) (0.056) (0.055)

log(GDPjl,t) 0.686*** 0.637*** 0.649*** 0.654*** 0.664***
(0.039) (0.056) (0.057) (0.055) (0.054)

log(Lint
ik,t) 0.062 0.181* 0.189* 0.179* 0.312***

(0.052) (0.107) (0.108) (0.106) (0.111)
log(Lint

jl,t) 0.051 0.142 0.141 0.141 0.245**
(0.044) (0.087) (0.086) (0.087) (0.101)

log(Kint
ik,t) 0.001 0.033 0.025 0.042 0.075

(0.049) (0.091) (0.081) (0.088) (0.087)
log(Kint

jl,t) -0.003 0.023 0.018 0.025 0.060
(0.045) (0.087) (0.077) (0.084) (0.082)

FTA Yes Yes Yes Yes Yes
Country-pair FE Yes Yes Yes Yes Yes
Acq. sector FE Yes Yes Yes Yes Yes
Tar. sector FE Yes Yes Yes Yes Yes
Acq. country-year FE Yes Yes Yes Yes Yes
Tar. country-year FE Yes Yes Yes Yes Yes

AIC 324,795 406,625 401,345 418,085 436,104
Observations 6,945,400 6,873,098 6,829,170 6,888,019 7,060,944
* p < 0.1, ** p < 0.05, *** p < 0.01

Notes: Table B.6 presents estimates from a specification and sample identical to that of column
(1) in Table 2. In columns (1)-(5), we remove from the sample (both on the acquiring and
target sides) firms based respectively in the US, the UK, Germany, France and Japan. All
results estimated with a Poisson Pseudo-Maximum Likelihood estimator. Standard errors are
clustered at the acquiring-target country-sector pair level.
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Table B.7: Impacts of the implementation of a $50/tCO2 carbon tax on the number of
domestic firms acquired

EU-only EU and OECD Allwithout the US

Other OECD 0.6% -5.6% -1.9%
European Union -4.8% -4.1% -0.2%
BRICS 0.6% 1.3% -22.6%
Other non-OECD 0.6% -1.8% -6.8%
Japan 0.6% -3.9% -0.1%
United States 0.6% 1.3% -4.7%
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Table B.8: Counterfactual simulation results by country

EU-only EU and OECD Allwithout the US

Australia 0.6% -8.2% -4.5%
Austria -4.6% -3.9% 0.0%
Belgium -4.0% -3.3% 0.6%
Brazil 0.6% 1.3% -0.6%
Bulgaria -13.0% -12.4% -8.9%
Canada 0.6% -5.1% -1.3%
China 0.6% 1.3% -28.4%
Cyprus -5.3% -4.7% -0.9%
Czechia -7.2% -6.6% -2.9%
Denmark -3.4% -2.7% 1.2%
Estonia -9.1% -8.4% -4.8%
Finland -4.1% -3.4% 0.5%
France -3.5% -2.8% 1.1%
Germany -5.2% -4.5% -0.7%
Greece -6.7% -6.0% -2.3%
Hungary -3.5% -2.8% 1.1%
India 0.6% 1.3% -12.0%
Indonesia 0.6% 1.3% -5.7%
Ireland -4.1% -3.4% 0.4%
Italy -3.0% -2.3% 1.6%
Japan 0.6% -3.9% -0.1%
Kazakhstan 0.6% 1.3% -33.7%
Lithuania -6.5% -5.8% -2.0%
Luxembourg -4.2% -3.5% 0.3%
Mexico 0.6% -4.2% -0.4%
Netherlands -5.0% -4.3% -0.5%
New Zealand 0.6% -6.1% -2.4%
Norway 0.6% -0.5% 3.4%
Poland -10.5% -9.8% -6.2%
Portugal -3.8% -3.1% 0.7%
Romania -12.9% -12.3% -8.8%
Russia 0.6% 1.3% -15.7%
Slovakia -4.8% -4.1% -0.3%
Slovenia -3.8% -3.1% 0.8%
South Africa 0.6% 1.3% -33.0%
South Korea 0.6% -7.3% -3.6%
Spain -4.7% -4.1% -0.2%
Sweden -1.5% -0.8% 3.1%
Switzerland 0.6% -1.0% 2.9%
Taiwan 0.6% 1.3% -13.0%
Turkey 0.6% -5.0% -1.2%
United Kingdom -5.8% -5.1% -1.4%
United States 0.6% 1.3% -4.7%
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C Sectoral classifications

Table C.1: IEA sectors definitions

IEA ISIC rev. 4

Iron and steel 241, 2431

Chemical and petrochemical 20, 21

Non-ferrous metals 242, 2432

Non-metallic minerals 23

Transport equipment 29, 30

Machinery 25, 26, 27, 28

Mining and quarrying 07, 08, 099

Food, beverages and tobacco 10, 11, 12

Paper, pulp and printing 17, 18

Wood and wood products 16

Construction 41, 42, 43

Textile and leather 13, 14, 15

Industry 22, 31, 32
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Table C.2: Correspondence between ISIC 3.1 and IEA sectors

ISIC 3.1 Code ISIC 3.1 Name IEA Sector

15 Food and beverages Food and tobacco
16 Tobacco products Food and tobacco
17 Textiles Textile and leather
18 Wearing apparel, fur Textile and leather
19 Leather, leather products and footwear Textile and leather
20 Wood products (excl. furniture) Wood and wood products
21 Paper and paper products Paper, pulp and print
22 Printing and publishing Paper, pulp and print
23 Coke,refined petroleum products,nuclear fuel Chemical and petrochemical
24 Chemicals and chemical products Chemical and petrochemical
25 Rubber and plastics products Manufacturing
26 Non-metallic mineral products Non-metallic minerals

2710 Iron and steel Iron and steel
2720 Non-ferrous metals Non-ferrous metals
28 Fabricated metal products Machinery
29 Machinery and equipment n.e.c. Machinery
30 Office, accounting and computing machinery Machinery
31 Electrical machinery and apparatus Machinery
32 Radio,television and communication equipment Machinery
33 Medical, precision and optical instruments Machinery
34 Motor vehicles, trailers, semi-trailers Transport equipment
35 Other transport equipment Transport equipment
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D Transactions value
Here we assess our strategy to test the influence of energy prices on the number of trans-
actions between two country-sector pairs. We want to know if measurement error is a
serious concern when using this count variable to capture changes to foreign capital move-
ments over time. This may be an issue if, for example, there is little correlation between
the number and size of deal values. However, if there are systematic patters, for exam-
ple, the number of deals are generally increasing over time while the size of the deals are
also becoming larger, then our empirical strategy to use the number of deals as dependent
variable and control for unobserved heterogeneity by year using year fixed effects is sound.

To test, we use a small subset of our data where deal values are consistently reported.
These are deals occurring between publicly listed companies, and account for less than 10%
of the transactions we observe (see Table D.1). Firms acquiring privately held companies
are under no obligation to reveal the value of their acquisitions hence reporting is patchy.
Previous papers using the Thomson-Reuters M&A dataset to assess determinants of FDI
flows also use deal counts generally while recognizing the issue, but have not questioned
this strategy thoroughly (Hijzen et al., 2008; Feito-Ruiz and Menéndez-Requejo, 2011;
Dowling and Aribi, 2013).

Table D.1: Transaction values coverage

Firm ownership Share of Share of transaction values
Acquirer Target all transactions observed within category

Private Private 47% 22%
Public Private 41% 49%
Private Public 3% 64%
Public Public 9% 84%

Results are reported in Table D.2. We find the expected sign for βe. The magnitude
of the estimate is larger on all transactions (-0.44 vs -0.32), but smaller on acquisition of
assets (-0.18 vs -0.32). However, in all cases the point estimates of βe fail to reach sta-
tistical significance. More extensive data on transaction values will be needed to confirm
these preliminary findings.
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Table D.2: Main results using the values of transactions

All transactions Acquisition of assets
(1) (2) (3) (4)

Baseline Cross-border Baseline Cross-border

log eijkl,t -0.438 -0.321 -0.181 -0.128
(0.405) (0.382) (0.410) (0.396)

log GDPik,t 0.261∗ 0.329∗∗ 0.585∗∗∗ 0.641∗∗∗

(0.136) (0.167) (0.121) (0.109)

log GDPjl,t 0.521∗∗∗ 0.664∗∗∗ 0.694∗∗∗ 0.755∗∗∗

(0.153) (0.152) (0.120) (0.114)

FTA Yes Yes Yes Yes
Country-pair FE Yes Yes Yes Yes
Country-time FE Yes Yes Yes Yes
Sectoral FE Yes Yes Yes Yes

Pseudo-LL -18,288,076 -8,665,322 -5,731,126 -3,107,450
Deviance 47,268 38,852 37,090 27,787
Observations 5,246,776 5,048,648 4,755,583 4,557,754
Transactions 37,287 7,349 37,287 7,349
All results estimated with a Poisson Pseudo-Maximum Likelihood estimator. Standard
errors in parentheses. All standard errors clustered by acquiring-target country-sector
pairs.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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